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Pointer and Array

Introduction

The arithmetic, addition, and subtraction, could be performed on

pointers to array elements
> It provides an alternative way of processing arrays in which pointers take the

place of array subscripts

Therefore, understanding the relationship between pointer and array is
very critical
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Pointer Arithmetic

If a pointer points to an array

int a[10], *p;
p = &a[0];



Pointer and Array

Pointer Arithmetic

If a pointer points to an array

int a[10], *p;
p = &a[0];
P =3
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Pointer Arithmetic

If p points to an element of an array a, the other elements of a can be
accessed by performing pointer arithmetic (or address arithmetic) on p

C supports only three forms of pointer arithmetic
» Adding an integer to a pointer
» Subtracting an integer from a pointer
» Subtracting one pointer from another
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Pointer Arithmetic - Adding Integer to Pointer

int a[10], *p, *q, i; P
p = &a[2]; 2
o 1
P
q=p+ 3; a
0o 1
P+ = 6; d
0o 1
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Pointer Arithmetic - Subtracting Integer to Pointer

int a[10], *p, *q, i;

p = &a[8]; 2
0 1 2

q=p-3l d
0 1 2
"

p-= 6, a
0 1 2
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Pointer Arithmetic - Subtracting Pointer from Another

int a[10], *p, *q, i;

p = &a[5];
q = &a[1]; d
i=p-q;, //i=4 I

i=q-p; //i=-4 ¢
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Pointer Comparison

Pointers can be compared using the relational operations and the

equality operators

> <, <=, >, >=
« Using the relational operators is meaningful only for pointers to elements of the same array

>» == and !=

The outcome of the comparison depends on the relative positions of the
two elements in the array

After the assignments b = &a[5];
» the value of p <= qis 0 and the value of p >=qis 1 q = &a[1];
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Pointer Comparison

It's legal for a pointer to point to an element within an array created by
a compound literal such as

int *p = (int [1){3, 0, 3, 4, 1}:

But, using a compound literal makes us the trouble of first declaring an
array variable and then making up point to the first element of that

array
int a[] — {3, O, 3/ 4/ 1}1

int *p = &a[0];
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Pointer Comparison

Suppose that the following declarations are in effect:

int a[] = {5, 15, 34, 54, 14, 2, 52, 72};
int *p = &a[1], *q = &a[5];

(a) What is the value of *(p+3)? 14
(b) What is the value of *(g-3)? 34
(c) What is the value of g-p? 4
(d) Is the condition p < g true or false? Y
(e) Is the condition *p < *q true or false? N

13



Pointer and Array

Array <-> Pointer

Pointer arithmetic allows us to visit the elements of an array by
incrementing a pointer variable repeatedly

#define N 10 P I
int a[N], sum, *p; 3
Sum — 0; um 0 1 2 3 4 5 6 7 8 9
for (p = &a[0]; p < &a[N]; p++)
{ oy
sum += *p; 5

} 0 1 2 3 4 5 6 7 8 9
sum
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Array <-> Pointer

The * and ++ operators are often combined in C

ali++] =3j;

p = &ali];
*p++ =

p = &ali];
*(p++) =7;

Because the postfix version ++ takes precedence over *

15
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Array <-> Pointer

Possible combinations of * and ++

Value of expression is *p before increment;

b S b S
p++ or *(p++) increment p later

Value of expression is *p before increment;

X
("p)++ increment *p later

Increment p first;

*++p or *(++ fap - i
P (++p) value of expression is *p after increment

Increment *p first;

++*p or ++(* PR i
P (*p) value of expression is *p after increment

16
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Array <-> Pointer

The most common combinations of * and ++ is *p++, which is handy

in loops
for (p = &a[0]; p < &a[N];

p++)
sum += *p;
|
p = &a[0];

while (p < &a[N])
sum += *p++;

The * and -- operators mix in the same way as * and ++

17
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Array <-> Pointer

What will be the contents of the a array after the following statements
are executed?

#define N 10

inta[N] ={1, 2, 3,4,5,6,7,8,9, 10};
int *p = &a[0], *q = &a[N-1], temp;
while (p < q)

{

T o o [ I A

temp = *p;
*p++ = *q;
*g-- = temp;
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Pointer and Array

Array <-> Pointer

Pointer arithmetic is one way in which arrays and pointer are related

Another critical relationship

» The name of an array can be used as a pointer to the first element in the
array

This relationship simplifies pointer arithmetic and makes both arrays
and pointers more versatile

If the array a is declared as
int a[10];

Using a as a pointer

*a=7; //stores 7 in a[0]
*(a+1) = 12; //stores 12 in a[1]

19



Pointer and Array

Array <-> Pointer

In fact, the array name can serve as a pointer makes it easier to write
loops that step through an array

#define N 10 #define N 10
int a[N], *p; int a[N], *p;
for (p = &a[0]; p < &a[N]; p++) for(p=a;p<a+N; p++)

sum += *p; sum += *p;

20
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Array <-> Pointer

Although an array name can be used as a pointer, it's not possible to

assign it a new value
#define N 10

int a[N];
while (*a = 0)
a++; /[Error

We can use a pointer variable to point to a and change it

#define N 10

int a[N];

int *p = a;

while (*p = 0)
p++,;
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Array <-> Pointer

Write a program that reads a message and checks whether it's a
palindrome or not using pointer and function "isalpha”

Enter a message: He lived as a devil, eh?
Palindrome

Enter a message: Madam, I am Adam.
Not a palindrome
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Array <-> Pointer

Now you can understand why the following code can't compute the
length of the array argument

int f{int a[])
MH sizeof(a) =4 sizeof(a[0]) = 4

B

In fact, an array argument is treated as a pointer has some important
conseqguences

23
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Array <-> Pointer

Consequence 1

» When an ordinary variable is passed to a function, its value is copied and any
changes to the corresponding parameter don't affect the variable

In contrast, an array used as an argument isn't protected against
change
void initial_zeros(int a[], int n)

{

Int i;

for(i=0;i<n;i++)
ali] = 0;

24
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Array <-> Pointer

To ensure that an array parameter won't be changed, the word const
can be used in its declaration

void initial_zeros(const int a[], int n)

{
Int i;
for(i=0;i<n;i++)
ali] = 0; //Error: assignment of read-only location '*a'
¥

If const is present, the compiler will check that no assignment to an
element of a appears in the body of initial_zeros

25
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Array <-> Pointer

Conseguence 2

» The time required to pass an array to a function doesn't depend on the size
of the array

> Actually, there is no penalty for passing a large array, since no copy of the
array is made

Consequence 3
> An array parameter can be declared as a pointer if desired
> initial_zeros could be defined as

void initial_zeros(int *a, int n)

{
-
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Array <-> Pointer

Consequence 4

» A function with an array parameter can be passed an array "slice" - a
sequence of consecutive elements

void initial_zeros(int *a, int n)

{
-

initial_zeros(&b[5], 10);  From element 5 to 14 of array b
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Array <-> Pointer

C allows us to subscript a pointer as though it were an array name
#define N 10

int a[N], i, sum = 0, *p = a;

1:c.)r (i=0;i<N;i++)
sum += pli];

The compiler treats pl[i] as *(p+i)
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Array <-> Pointer

Suppose that a is @ one-dimensional array and p is a pointer variable.
Assuming that the assignment p = a has just bee performed, which of

the following expressions are illegal? Of the remaining expressions,
which are true?

(@)p == a[0] Illegal

(b)p == &a[0] _egal, true
(c) *p == a[0]  egal, true
(d)p[0] == a[0]  egal, true
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Array <-> Pointer

As pointers can point to elements of one-dimensional arrays, they can
also point to elements of multidimensional arrays

row 1 row 2 row m-1
N N N
a I a I a I

If p initially points to the element in row 0, column 0, every element
can be visited by incrementing p repeatedly
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Array <-> Pointer

Consider the problem of initializing all elements of the following array to
ZEero

int a[Num_Rows][Num_Cols];

Using nested for loops is a obvious technique

int row, col;
for (row = 0; row < Num_Rows; row++)
for (col = 0; col < Num_Cols; col++)
a[row][col] = 0;

If we view array a as a one-dimensional array of integers, a single loop

is sufficient .
int *p;
for (p = &a[0][0]; p <= &a[Num_Rows-1][Num_Cols-1]; p++)
*p=0;
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Array <-> Pointer

For any two-dimensional array a, the expression ali] is a pointer to the
first element in row |

int a[Num_Rows][Num_Cols];

Recall that a[i] is equal to *(a + i)
Therefore, &a[i][0] = &(*(a[i] + 0)) = a[i]
A loop that clears row i of the array a
int a[Num_Rows][Num_Cols], *p, i;

for (p = a[i]; p < a[i] + Num_Cols; p++)
*p=0;
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Array <-> Pointer

The name of any array can be used as a pointer, regardless of how
many dimensions it has, but some care is required

int a[Num_Rows][Num_Cols];

a is not a pointer to a[0][0]; instead, it's a pointer to a[0]

C regards a as a one-dimensional array whose elements are one-
dimensional arrays

When used as pointer, a has type int (*) [Num_Cols]
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Array <-> Pointer

Write a program to initialize an 10x10 identity array using a single
pointer
int *p;
for (p = &a[0][0]; p <= &a[Num_Rows-1][Num_Cols-1]; p++)
*p=0;

OO0 00000 0K,
Q0000000 PRFE O
Q000000 FKF O
OO0 LDOPRFPROLO D
O OO OO PRFRP OO0
Q000 RFP 00000
OO0, OO0
OO RFRE OO0 0400
QO RFPF OO0 0000
PR O 00000000
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