Pointer
and
Array

Index

y
Y

01. Pointer and Array
- Introduction
- Pointer Arithmetic
- Pointer Comparison
- Array <-> Pointer

' 01

‘ Poin
ter and Arra
Y

Pointer and Array

Introduction

The arithmetic, addition, and subtraction, could be performed on

pointers to array elements
> It provides an alternative way of processing arrays in which pointers take the

place of array subscripts

Therefore, understanding the relationship between pointer and array is
very critical

Pointer and Array

Pointer Arithmetic

If a pointer points to an array

int a[10], *p;
p = &a[0];

Pointer and Array

Pointer Arithmetic

If a pointer points to an array

int a[10], *p;
p = &a[0];
P =3

Pointer and Array

Pointer Arithmetic

If p points to an element of an array a, the other elements of a can be
accessed by performing pointer arithmetic (or address arithmetic) on p

C supports only three forms of pointer arithmetic
» Adding an integer to a pointer
» Subtracting an integer from a pointer
» Subtracting one pointer from another

Pointer and Array

Pointer Arithmetic - Adding Integer to Pointer

int a[10], *p, *q, i; P
p = &a[2]; 2
o 1
P
q=p+ 3; a
0o 1
P+ = 6; d
0o 1

Pointer and Array

Pointer Arithmetic - Subtracting Integer to Pointer

int a[10], *p, *q, i;

p = &a[8]; 2
0 1 2

q=p-3l d
0 1 2
"

p-= 6, a
0 1 2

Pointer and Array

Pointer Arithmetic - Subtracting Pointer from Another

int a[10], *p, *q, i;

p = &a[5];
q = &a[1]; d
i=p-q;, //i=4 I

i=q-p; //i=-4 ¢

10

Pointer and Array

Pointer Comparison

Pointers can be compared using the relational operations and the

equality operators

> <, <=, >, >=
« Using the relational operators is meaningful only for pointers to elements of the same array

>» == and !=

The outcome of the comparison depends on the relative positions of the
two elements in the array

After the assignments b = &a[5];
» the value of p <= qis 0 and the value of p >=qis 1 q = &a[1];

11

Pointer and Array

Pointer Comparison

It's legal for a pointer to point to an element within an array created by
a compound literal such as

int *p = (int [1){3, 0, 3, 4, 1}:

But, using a compound literal makes us the trouble of first declaring an
array variable and then making up point to the first element of that

array
int a[] — {3, O, 3/ 4/ 1}1

int *p = &a[0];

12

Pointer and Array

Pointer Comparison

Suppose that the following declarations are in effect:

int a[] = {5, 15, 34, 54, 14, 2, 52, 72};
int *p = &a[1], *q = &a[5];

(a) What is the value of *(p+3)? 14
(b) What is the value of *(g-3)? 34
(c) What is the value of g-p? 4
(d) Is the condition p < g true or false? Y
(e) Is the condition *p < *q true or false? N

13

Pointer and Array

Array <-> Pointer

Pointer arithmetic allows us to visit the elements of an array by
incrementing a pointer variable repeatedly

#define N 10 P I
int a[N], sum, *p; 3
Sum — 0; um 0 1 2 3 4 5 6 7 8 9
for (p = &a[0]; p < &a[N]; p++)
{ oy
sum += *p; 5

} 0 1 2 3 4 5 6 7 8 9
sum

14

Pointer and Array

Array <-> Pointer

The * and ++ operators are often combined in C

ali++] =3j;

p = &ali];
*p++ =

p = &ali];
*(p++) =7;

Because the postfix version ++ takes precedence over *

15

Pointer and Array

Array <-> Pointer

Possible combinations of * and ++

Value of expression is *p before increment;

b S b S
p++ or *(p++) increment p later

Value of expression is *p before increment;

X
("p)++ increment *p later

Increment p first;

*++p or *(++ fap - i
P (++p) value of expression is *p after increment

Increment *p first;

++*p or ++(* PR i
P (*p) value of expression is *p after increment

16

Pointer and Array

Array <-> Pointer

The most common combinations of * and ++ is *p++, which is handy

in loops
for (p = &a[0]; p < &a[N];

p++)
sum += *p;
|
p = &a[0];

while (p < &a[N])
sum += *p++;

The * and -- operators mix in the same way as * and ++

17

Pointer and Array

Array <-> Pointer

What will be the contents of the a array after the following statements
are executed?

#define N 10

inta[N] ={1, 2, 3,4,5,6,7,8,9, 10};
int *p = &a[0], *q = &a[N-1], temp;
while (p < q)

{

T o o [I A

temp = *p;
*p++ = *q;
*g-- = temp;

I-I
I__
.I
|
!
II
l..
e
|-|
J
il
|
I Lt
1
l.l
[
!
II
l..
(=

o
LT

Pointer and Array

Array <-> Pointer

Pointer arithmetic is one way in which arrays and pointer are related

Another critical relationship

» The name of an array can be used as a pointer to the first element in the
array

This relationship simplifies pointer arithmetic and makes both arrays
and pointers more versatile

If the array a is declared as
int a[10];

Using a as a pointer

*a=7; //stores 7 in a[0]
*(a+1) = 12; //stores 12 in a[1]

19

Pointer and Array

Array <-> Pointer

In fact, the array name can serve as a pointer makes it easier to write
loops that step through an array

#define N 10 #define N 10
int a[N], *p; int a[N], *p;
for (p = &a[0]; p < &a[N]; p++) for(p=a;p<a+N; p++)

sum += *p; sum += *p;

20

Pointer and Array

Array <-> Pointer

Although an array name can be used as a pointer, it's not possible to

assign it a new value
#define N 10

int a[N];
while (*a = 0)
a++; /[Error

We can use a pointer variable to point to a and change it

#define N 10

int a[N];

int *p = a;

while (*p = 0)
p++,;

21

Pointer and Array

Array <-> Pointer

Write a program that reads a message and checks whether it's a
palindrome or not using pointer and function "isalpha”

Enter a message: He lived as a devil, eh?
Palindrome

Enter a message: Madam, I am Adam.
Not a palindrome

22

Pointer and Array

Array <-> Pointer

Now you can understand why the following code can't compute the
length of the array argument

int f{int a[])
MH sizeof(a) =4 sizeof(a[0]) = 4

B

In fact, an array argument is treated as a pointer has some important
conseqguences

23

Pointer and Array

Array <-> Pointer

Consequence 1

» When an ordinary variable is passed to a function, its value is copied and any
changes to the corresponding parameter don't affect the variable

In contrast, an array used as an argument isn't protected against
change
void initial_zeros(int a[], int n)

{

Int i;

for(i=0;i<n;i++)
ali] = 0;

24

Pointer and Array

Array <-> Pointer

To ensure that an array parameter won't be changed, the word const
can be used in its declaration

void initial_zeros(const int a[], int n)

{
Int i;
for(i=0;i<n;i++)
ali] = 0; //Error: assignment of read-only location '*a'
¥

If const is present, the compiler will check that no assignment to an
element of a appears in the body of initial_zeros

25

Pointer and Array

Array <-> Pointer

Conseguence 2

» The time required to pass an array to a function doesn't depend on the size
of the array

> Actually, there is no penalty for passing a large array, since no copy of the
array is made

Consequence 3
> An array parameter can be declared as a pointer if desired
> initial_zeros could be defined as

void initial_zeros(int *a, int n)

{
-

26

Pointer and Array

Array <-> Pointer

Consequence 4

» A function with an array parameter can be passed an array "slice" - a
sequence of consecutive elements

void initial_zeros(int *a, int n)

{
-

initial_zeros(&b[5], 10); From element 5 to 14 of array b

27

Pointer and Array

Array <-> Pointer

C allows us to subscript a pointer as though it were an array name
#define N 10

int a[N], i, sum = 0, *p = a;

1:c.)r (i=0;i<N;i++)
sum += pli];

The compiler treats pl[i] as *(p+i)

28

Pointer and Array

Array <-> Pointer

Suppose that a is @ one-dimensional array and p is a pointer variable.
Assuming that the assignment p = a has just bee performed, which of

the following expressions are illegal? Of the remaining expressions,
which are true?

(@)p == a[0] Illegal

(b)p == &a[0] _egal, true
(c) *p == a[0] egal, true
(d)p[0] == a[0] egal, true

29

Pointer and Array

Array <-> Pointer

As pointers can point to elements of one-dimensional arrays, they can
also point to elements of multidimensional arrays

row 1 row 2 row m-1
N N N
a I a I a I

If p initially points to the element in row 0, column 0, every element
can be visited by incrementing p repeatedly

30

Pointer and Array

Array <-> Pointer

Consider the problem of initializing all elements of the following array to
ZEero

int a[Num_Rows][Num_Cols];

Using nested for loops is a obvious technique

int row, col;
for (row = 0; row < Num_Rows; row++)
for (col = 0; col < Num_Cols; col++)
a[row][col] = 0;

If we view array a as a one-dimensional array of integers, a single loop

is sufficient .
int *p;
for (p = &a[0][0]; p <= &a[Num_Rows-1][Num_Cols-1]; p++)
*p=0;

31

Pointer and Array

Array <-> Pointer

For any two-dimensional array a, the expression ali] is a pointer to the
first element in row |

int a[Num_Rows][Num_Cols];

Recall that a[i] is equal to *(a + i)
Therefore, &a[i][0] = &(*(a[i] + 0)) = a[i]
A loop that clears row i of the array a
int a[Num_Rows][Num_Cols], *p, i;

for (p = a[i]; p < a[i] + Num_Cols; p++)
*p=0;

32

Pointer and Array

Array <-> Pointer

The name of any array can be used as a pointer, regardless of how
many dimensions it has, but some care is required

int a[Num_Rows][Num_Cols];

a is not a pointer to a[0][0]; instead, it's a pointer to a[0]

C regards a as a one-dimensional array whose elements are one-
dimensional arrays

When used as pointer, a has type int (*) [Num_Cols]

33

Pointer and Array

Array <-> Pointer

Write a program to initialize an 10x10 identity array using a single
pointer
int *p;
for (p = &a[0][0]; p <= &a[Num_Rows-1][Num_Cols-1]; p++)
*p=0;

OO0 00000 0K,
Q0000000 PRFE O
Q000000 FKF O
OO0 LDOPRFPROLO D
O OO OO PRFRP OO0
Q000 RFP 00000
OO0, OO0
OO RFRE OO0 0400
QO RFPF OO0 0000
PR O 00000000

34

