
Pointer

and

Array

Index

01. Pointer and Array
- Introduction

- Pointer Arithmetic

- Pointer Comparison

- Array <-> Pointer

Pointer and Array

01

Pointer and Array
Introduction

The arithmetic, addition, and subtraction, could be performed on
pointers to array elements

➢ It provides an alternative way of processing arrays in which pointers take the
place of array subscripts

Therefore, understanding the relationship between pointer and array is
very critical

4

Pointer and Array
Pointer Arithmetic

If a pointer points to an array

int a[10], *p;

p = &a[0];

0 1 2 3 4 5 6 7 8 9

p

a

5

Pointer and Array
Pointer Arithmetic

If a pointer points to an array

int a[10], *p;

p = &a[0];

*p = 5;

5

0 1 2 3 4 5 6 7 8 9

p

a

6

Pointer and Array
Pointer Arithmetic

If p points to an element of an array a, the other elements of a can be
accessed by performing pointer arithmetic (or address arithmetic) on p

C supports only three forms of pointer arithmetic

➢ Adding an integer to a pointer

➢ Subtracting an integer from a pointer

➢ Subtracting one pointer from another

7

Pointer and Array
Pointer Arithmetic - Adding Integer to Pointer

int a[10], *p, *q, i;

p = &a[2];

q = p + 3;

p+ = 6;

0 1 2 3 4 5 6 7 8 9

p

a

0 1 2 3 4 5 6 7 8 9

p

a

q

0 1 2 3 4 5 6 7 8 9

p

a

q

8

Pointer and Array
Pointer Arithmetic - Subtracting Integer to Pointer

int a[10], *p, *q, i;

p = &a[8];

q = p - 3;

p -= 6;

0 1 2 3 4 5 6 7 8 9

p

a

0 1 2 3 4 5 6 7 8 9

p

a

q

0 1 2 3 4 5 6 7 8 9

p

a

q

9

Pointer and Array
Pointer Arithmetic - Subtracting Pointer from Another

int a[10], *p, *q, i;

p = &a[5];

q = &a[1];

i = p - q; // i = 4

i = q - p; // i = -4
0 1 2 3 4 5 6 7 8 9

p

a

q

10

Pointer and Array
Pointer Comparison

Pointers can be compared using the relational operations and the
equality operators

➢ <, <=, >, >=
• Using the relational operators is meaningful only for pointers to elements of the same array

➢ == and !=

The outcome of the comparison depends on the relative positions of the
two elements in the array

After the assignments

➢ the value of p <= q is 0 and the value of p >=q is 1
p = &a[5];

q = &a[1];

11

Pointer and Array
Pointer Comparison

It's legal for a pointer to point to an element within an array created by
a compound literal such as

But, using a compound literal makes us the trouble of first declaring an
array variable and then making up point to the first element of that
array

int *p = (int []){3, 0, 3, 4, 1};

int a[] = {3, 0, 3, 4, 1};

int *p = &a[0];

12

Pointer and Array
Pointer Comparison

Suppose that the following declarations are in effect:

int a[] = {5, 15, 34, 54, 14, 2, 52, 72};

int *p = &a[1], *q = &a[5];

(a) What is the value of *(p+3)?

(b) What is the value of *(q-3)?

(c) What is the value of q-p?

(d) Is the condition p < q true or false?

(e) Is the condition *p < *q true or false?

14

34

4

Y

N

13

Pointer and Array
Array <-> Pointer

Pointer arithmetic allows us to visit the elements of an array by
incrementing a pointer variable repeatedly

#define N 10

int a[N], sum, *p;

sum = 0;

for (p = &a[0]; p < &a[N]; p++)

{

sum += *p;

}

14

Pointer and Array
Array <-> Pointer

The * and ++ operators are often combined in C

a[i++] = j;

p = &a[i];
*p++ = j;

p = &a[i];
*(p++) = j;

Because the postfix version ++ takes precedence over *
15

Pointer and Array
Array <-> Pointer

Possible combinations of * and ++

Expression Meaning

*p++ or *(p++)
Value of expression is *p before increment;
increment p later

(*p)++
Value of expression is *p before increment;
increment *p later

*++p or *(++p)
Increment p first;
value of expression is *p after increment

++*p or ++(*p)
Increment *p first;
value of expression is *p after increment

16

Pointer and Array
Array <-> Pointer

The most common combinations of * and ++ is *p++, which is handy
in loops

for (p = &a[0]; p < &a[N];
p++)
sum += *p;

p = &a[0];

while (p < &a[N])
sum += *p++;

The * and -- operators mix in the same way as * and ++

17

Pointer and Array
Array <-> Pointer

What will be the contents of the a array after the following statements
are executed?

#define N 10

int a[N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int *p = &a[0], *q = &a[N-1], temp;

while (p < q)

{

temp = *p;

*p++ = *q;

*q-- = temp;

}
18

Pointer and Array
Array <-> Pointer

Pointer arithmetic is one way in which arrays and pointer are related

Another critical relationship

➢ The name of an array can be used as a pointer to the first element in the
array

This relationship simplifies pointer arithmetic and makes both arrays
and pointers more versatile

If the array a is declared as

Using a as a pointer

int a[10];

*a = 7; //stores 7 in a[0]
*(a+1) = 12; //stores 12 in a[1]

19

Pointer and Array
Array <-> Pointer

In fact, the array name can serve as a pointer makes it easier to write
loops that step through an array

#define N 10

int a[N], *p;

for (p = &a[0]; p < &a[N]; p++)
sum += *p;

#define N 10

int a[N], *p;

for (p = a; p < a + N; p++)
sum += *p;

20

Pointer and Array
Array <-> Pointer

Although an array name can be used as a pointer, it's not possible to
assign it a new value

#define N 10

int a[N];

while (*a != 0)
a++; //Error

#define N 10

int a[N];

int *p = a;

while (*p != 0)
p++;

We can use a pointer variable to point to a and change it

21

Pointer and Array
Array <-> Pointer

Write a program that reads a message and checks whether it's a
palindrome or not using pointer and function "isalpha"

22

Pointer and Array
Array <-> Pointer

Now you can understand why the following code can't compute the
length of the array argument

sizeof(a) = 4 sizeof(a[0]) = 4

In fact, an array argument is treated as a pointer has some important
consequences

23

Pointer and Array
Array <-> Pointer

Consequence 1

➢ When an ordinary variable is passed to a function, its value is copied and any
changes to the corresponding parameter don't affect the variable

In contrast, an array used as an argument isn't protected against
change

void initial_zeros(int a[], int n)
{

int i;

for (i = 0; i < n; i++)
a[i] = 0;

}

24

Pointer and Array
Array <-> Pointer

To ensure that an array parameter won't be changed, the word const
can be used in its declaration

void initial_zeros(const int a[], int n)
{

int i;

for (i = 0; i < n; i++)
a[i] = 0; //Error: assignment of read-only location '*a'

}

If const is present, the compiler will check that no assignment to an
element of a appears in the body of initial_zeros

25

Pointer and Array
Array <-> Pointer

Consequence 2

➢ The time required to pass an array to a function doesn't depend on the size
of the array

➢ Actually, there is no penalty for passing a large array, since no copy of the
array is made

Consequence 3
➢ An array parameter can be declared as a pointer if desired
➢ initial_zeros could be defined as

void initial_zeros(int *a, int n)
{
…

}
26

Pointer and Array
Array <-> Pointer

Consequence 4

➢ A function with an array parameter can be passed an array "slice" - a
sequence of consecutive elements

void initial_zeros(int *a, int n)
{
…

}

initial_zeros(&b[5], 10); From element 5 to 14 of array b

27

Pointer and Array
Array <-> Pointer

C allows us to subscript a pointer as though it were an array name

#define N 10
…
int a[N], i, sum = 0, *p = a;
…
for (i = 0; i < N; i++)

sum += p[i];

The compiler treats p[i] as *(p+i)

28

Pointer and Array
Array <-> Pointer

Suppose that a is a one-dimensional array and p is a pointer variable.
Assuming that the assignment p = a has just bee performed, which of
the following expressions are illegal? Of the remaining expressions,
which are true?

(a) p == a[0]

(b)p == &a[0]

(c) *p == a[0]

(d)p[0] == a[0]

Illegal

Legal, true

Legal, true

Legal, true

29

Pointer and Array
Array <-> Pointer

As pointers can point to elements of one-dimensional arrays, they can
also point to elements of multidimensional arrays

0 1 … n-1 0 1 … n-1 0 1 … n-1

row 1 row 2 row m-1

If p initially points to the element in row 0, column 0, every element
can be visited by incrementing p repeatedly

30

Pointer and Array
Array <-> Pointer

Consider the problem of initializing all elements of the following array to
zero

Using nested for loops is a obvious technique

int a[Num_Rows][Num_Cols];

int row, col;
for (row = 0; row < Num_Rows; row++)

for (col = 0; col < Num_Cols; col++)
a[row][col] = 0;

int *p;
for (p = &a[0][0]; p <= &a[Num_Rows-1][Num_Cols-1]; p++)

*p = 0;

If we view array a as a one-dimensional array of integers, a single loop
is sufficient

31

Pointer and Array
Array <-> Pointer

For any two-dimensional array a, the expression a[i] is a pointer to the
first element in row i

Recall that a[i] is equal to *(a + i)

Therefore, &a[i][0] = &(*(a[i] + 0)) = a[i]

A loop that clears row i of the array a

int a[Num_Rows][Num_Cols];

int a[Num_Rows][Num_Cols], *p, i;
for (p = a[i]; p < a[i] + Num_Cols; p++)

*p = 0;

32

Pointer and Array
Array <-> Pointer

The name of any array can be used as a pointer, regardless of how
many dimensions it has, but some care is required

a is not a pointer to a[0][0]; instead, it's a pointer to a[0]

C regards a as a one-dimensional array whose elements are one-
dimensional arrays

When used as pointer, a has type int (*) [Num_Cols]

int a[Num_Rows][Num_Cols];

33

Pointer and Array
Array <-> Pointer

Write a program to initialize an 1010 identity array using a single
pointer

int *p;
for (p = &a[0][0]; p <= &a[Num_Rows-1][Num_Cols-1]; p++)

*p = 0;

34

